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LETTER TO THE EDITOR 

Commutation relations for periodic operators 

D Losstts and K MullentJJ 
t Department of Physics, University of Illinois at Urbana-Champaign, I110 West Green 
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Received 21 November 1991 

Abstract. Although periodic variables are common in quantum systems, there is still some 
question of their proper commutation relations. We show that the standard commutation 
relations, when applied carefully, do not lead to inconsistencies. We discuss other 
approaches to the problem in the literature. 

A variety of quantum systems are described by wavefunctions that are strictly periodic 
i? some generalized phase variable. Most fundamental, pefhaps, is the azimuthal angle, 
8, of an electron in its orbital, whose conjugate operator L, measures the z-component 
of the angular momentum. Since we require the wavefunction to satisfy periodic 
boundary conditions, so that Y(O=O)=Y(O=Z?r), with O <  %s2?r ,  we refer to % as 
being compact (defined only over a finite interval) and to "(0) as periodic. Another 

wavefunction across a Josephson junction [l-61. If the junction is made from two 
disjoint superconductors (i.e. not from a ring of superconductors) then physical states 
in which 4 differs by multiples of 2 ~ r  are indistinguishable and we again have to 
choose periodic boundary conditions. A third example of recent importance is a small 
normal metal ring [7-101. If we consider the simple case of a single electron confined 
to a mesoscopic normal metal ring: then its description again requires a compact 
variable, 0, that denotes the angular position of an electron on the ring, and again we 
require the single-valuedness boundary condition "(0 = 0 )  = Y ( 0  = 2 ~ ) .  To maintain 
this periodic boundary condition in the presence of an external magnetic flux the 
electron will adjust its momentum, thereby generating a net current. A related 
phenomenon due to the single-valuedness of the wavefunction leads to the Aharonov- 
Bohm effect [ l l ] .  Other examples of phase variables occur in optics, atomic physics, 
and many solid state systems. 

It is then surprising that there is some question as to the proper commutation 
relations for phase operators 112-171. For the sake of concreteness, we consider the 
case of i, the angular momentum operator, and 6, the angular position operator of a 
particle confined to a one-dimensional ring of radius Q such as a bead on a circular 
loop. This system is described by smooth, square integrable wavefunctions on the 
l , , l C l " d ,  LU, L7r, UlaL uusy yc,ruu,c vuurruar)l c.UII"ILIUIID L.1 v. 1,115 G*d,,qJ,G LD U,SLl"Cl 

A exar,p;e is the phase opeiaioi 6, -which measures the phase dieereiice of the pair 
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from cases where the ‘momentum’ takes on only non-negative integral values [14]. 
Given the standard Schrodinger representation for the angular momentum operator, 
i= -iha/aO, it immediately follows that the commutation relation is 

^ ^  

[L, 81 = -ih. (1) 

However, if we take matrix elements in the angular momentum basis, Im), where 
i l m ) =  hmlm), we find 

..A A .  

(ml[i ,  i ] l n ) = ( m l ~ e  - ~ l n ) =  (m - n)(mle*ln) 

(m-n) (ml i ln )=  -ihs,,. (3) 

(2) 

where we have invoked the self-adjointness of i. Equating this to the matrix element 
of the right-hand side of (l) ,  we obtain the contradictory result 

If m = n, the right-hand side is non-zero, while the left-hand side is zero [!2, 171. 
It has been argued [12-171 that this paradox is due to the fact that 8 is not an 

allowable operator on the space of periodic functions, unless one defines the phase 
operator in such a way that it is $self periodic. Note that the derivation of (1) using 
the standard definition of i and 8 is not claimed to be wrong, but rather that the use 
of 6 itself is inconsistent, because equally valid arguments lead to contradictory results. 
It is the aim of this letter to resolve this paradox, by showing that (3) is based on 
incorrect mathematical transformations. After doing so we will briefly mention other 
approaches to this problem. 1 

First, we note that it is indeed true that 0 by itself alone is not an allowable operator 
on the space of periodic functions (that do not vanish on the boundaries), since it 
projects them out of the original ‘Hilbeft space’t. Nevertheless, this-argument does 
not prove that appropria!e functions of 8, or combinations of 8 and L are-forbidden. 
Consider the operator ei’, which is manifestly periodic; if we expand it in 8, each term 
of the sum is not. Only after we recombine all the terms of an expansion that we can 
determine whether or not the original operator is periodic. A second example is the 
angular velocity pf the particle moving on the ring. Here physics dictates that the 
velocity operator 6is  a periodic operator. Mathematically, this is clear from its definition 

i&= [6, HI (4) 

which shows that 8 is invariant under the transformation 6- e^+??r, provided that H 
is periodic in 6. A third examplc is the commutator itself, C ( O ) - [ i ,  61 which is, 
periodic for the same reason as 6. We see that the mere presence of the operator 8 
does not immediately imply that a given expression is impermissible in our subspace 
of periodic functions. 

Second, one must recognize that the Dirac notation of (2) is ambiguous and thus 
can be misleading. To avoid this ambiguity we introduce the following inner product 
notation, in an angular momentum basis, 

where 2 is an arbitrary operator. 

t To be ?ore precise, it projects periodic wavefunctions out of the definition range of the self-adjoint 
operator L, a range which is a dense subset of the full Hilbert space of square integrable functions. For a 
discussion of such issues see [191. 
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The difficulty comes in taking the adjoint of i. In the Dirac notation we have used 

(mlie*ln)= m(ml6ln) (wrong) ( 6 )  

which is not correct because i is not self-adjoint on iln) (because i l n )  is not a periodic 
ket). This was noted by Carmthers and Nieto 1161 who then went on to conclude that 
ê  is not an allowable operator and should be replaced by a periodic extension, to be 
discussed below. However, for reasons given earlier, it is not appropriate to consider 
only one term in the commutator and judge the whole expression as meaningless [lS]. 
Thus, we proceed to evaluate this term using the inner product notation carefully 

( m ,  ib) = ( i m ,  f) -ifi (7) 

where the term -ih comes from the boundary term in the partial integration. Using 
this result in evaluating the full commutator we have 

(8) 
^I .1 

(m, {Le - OL}~) = h ( m  - n ) ( m ,  &) - ih = -ifis,. 
which is in complete agreement witb (1) and thus resolves our paradox. 

The matrix elements of the terms Lê  and 6 i  are always calculable and finite and 
thus mathematically well defined. Each term by itself is not an allowable operator on 
our space of periodic wavefunctions, in particular in the sense that we have to be 
careful when using the standard operator manipulations as is clear from (6) and (7). 
However, this does not preclude the occurrence of these terms in intermediate steps 
of the calculation. What matters in this context is that their difference is an allowable 
operator. In using the Dirac notation on periodic systems, the self-adjointness of an 
operator must be used with care whenever non-periodic operators occur in the course 
of the computation. 

operators that correspond to sin e* and cos 6, and derive their appropriaLe commutation 
relations. This avoids the above problems since one never deals with 0 itself, and the 
periodicity of these operators is guaranteed by construction. U;nfo?unately, in the 
examples given in the introduction, we are often interested in 0 =[e, Hllifi, so the 
question at hand cannot be avoided in this manner. 

Susskind and Glogower [ 141 introduce a generalized periodic phase operator which 
we shall call &sG2 to avoid confusion. It is the periodic extension of i, a sawtooth 
wave defined by: QsG(8) = [( 8+ T) mod 2 4  - T. This new operator has the commuta- 
tion relation 

A n  . I temnte  gnnm-rh hu Ps*ni+hnrc *nrl Nietn r l h l  n r f i r e d ~  hw A&n;nn n ~ w  
I... ".......-.- 'Yr.""'.. ", -".."...vl~ "._.. 1.. 1." L ' y J  Y.V".,"-." .,, -."..L.L.L6 ..-.. 

[ i , & s G ] = i ( ~  -27r6(&sG-7r)). (9) 

Yet another approach is that of Barnett and Pegg [17] who derive a representation 
for the phase operator &)Bp when the number of angular momentum states is finite, 
- lo<  m s  I,. The commutation relations are calculated for fixed I,,, and then the limit 
lo+a should only be taken at the end of the calculations [17]. They obtain 

Equation (9) can be obtained as a special case of (IO), as discussed in [17]. Note that 
in both cases (9) and (IO) the commutator is not a simple c-number, as it is in (1). 
This has drastic consequences for the calculation of many dynamical quantities, in 
atomic, optical and solid state physics. To the best of our knowledge, no physical 
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consequences of the operator character of these commutation relations have been 
calculated theoretically or observed experimentally. 

It is worth noting that the above candidates (9) and (10) for replacing the standard 
commutation relation predict that the angular momentum of a free particle is not 
simply related to its angular velocity. One might expect that for large enough rings 
and values of the angular momentum, one would obtain an Ehrenfest-like result, so 
that 0oc L. However, given the free particle Hamiltonian for a bead of mass m on a 
circle of radius R, 

i 2  H = -  
2mR2 

one finds using (9) or (lo), 

We see that the expectation value of the angular velocity in any eigenstate of the 
angular momentum is identically zero. Thus & does not have the usual meaning of an 
angular velocity in the classical limit, and thus loses connection with our standard 
physical interpretation,. On the other hand, the commutation relation of (1) gives the 
desired result that (nle^ln)= n h / m R 2 .  

We emphasize that we do  not claim that s^ is anAobservable, nor do  we comment 
on the Heisenberg uncertainty relation for s^ and L. These issues are separate from 
the question of the proper commutation relation, treated here. Altemative formulations 
of the phase operator may be useful in this context [16, 171. We also do not deal with 
cases where the discrete operator (i.e. the 'momentum') takes on only non-negative 
integral values, such as the energy of a harmonic oscillator. 

In summary, one must be careful when using phase operators in periodic quantum 
mechanical systems, especially with regard to questions of self-adjointness. We find 
that the standard definitions of phase and angular momentum operators lead to the 
standard commutation relations given in ( l ) ,  and not to the inconsistent result claimed 
in the literature. In addition the standard approach gives results that correspond to 
what we expect of phase and angular momentum variables in the classical limit. 

We thank the MacArthur Foundation for support during this research. One of us (DL) 
also thanks the Swiss National Science Foundation for support. We are grateful to 
Tony Leggett for discussions. 
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